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Abstract. For an invariant Lagrangian equal to kinetic energy and defined on a semidirect
product of Lie groups, the variational problems can be reduced using the group symmetry. Choosing
the Riemannian connection of a positive definite metric tensor, instead of any of the canonical
connections for the Lie group, simplifies the reduction of the variations but complicates the expression
for the Lie algebra valued covariant derivatives. The origin of the discrepancy is due to the semidirect
product structure, which implies that the Riemannian exponential map and the Lie group exponential
map do not coincide. The consequence is that the reduced equations contain more terms than the
original ones. The reduced Euler-Lagrange equations are well-known under the name of Euler-
Poincaré equations. We treat in a similar way the reduction of second order variational problems
corresponding to geometric splines on the Lie group. Here the problems connected with the semidirect
structure are emphasized and a number of extra terms is appearing in the reduction. If the Lagrangian
corresponds to a fully actuated mechanical system, then the resulting necessary condition can be
expressed directly in terms of the control input. As an application, the case of a rigid body on the
Special Euclidean group is considered.
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1. Introduction. The use of group symmetry to simplify the formulation of
Euler-Lagrange equations defined on the tangent bundle of a Lie group G is well-
known in the literature on geometric mechanics, see [16]. The reduction is based on
factoring out the dependence from G in a G-invariant Lagrangian i.e. in studying
a variational problem on g ' TG/G rather than on the whole of TG. Instead of
Euler-Lagrange equations on TG, one obtains the Euler-Poincaré equations on G ×
g. If the Lagrangian is constituted by kinetic energy only, then the Riemannian
counterpart of this formulation corresponds to the reduction of the first variational
formula. Assume that G is a semidirect product of a Lie group and a vector space,
without nontrivial fixed points, and that the metric tensor I is positive definite. Due to
the semidirect product structure, such a metric cannot be biinvariant and therefore the
Riemannian connection induced by I is (in the language of [11], Ch.X) neither natural
nor canonical. In this case, in fact, the natural connection is pseudo-Riemannian i.e.
the corresponding quadratic form has to have both positive and negative eigenvalues.

The advantage of choosing I positive definite (beside being compatible with simple
mechanical systems having G as configuration space) is that the reduction of the
variations of curves can be carried out quite easily. In fact, for families of proper
variations the symmetry lemma, expressing the commutativity of the variational fields
along the main and transverse curves, still holds after the reduction since all the
vector fields involved admit invariant expressions. What gets more complicated is
the reduction of the covariant derivatives, as the notion of parallel transport given
by the Riemannian connection does not fit with the reduction process. This is due
to the difference between the Riemannian exponential map associated with I and the
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Lie group exponential map, and to the consequent mismatch between the two types
of one-parameter subgroups. So, for example, geodesics of I do not correspond to
one-parameter subgroups of G. In spite of this complication, the reduction of the
first order variational formula (i.e. the Euler-Poincaré equations) is still quite easy
to obtain and its advantage in practical applications over the full Euler-Lagrange
equations well-documented (for their exploitation in Robotic applications see [2, 3]).
The scope of this paper is to treat in a similar way the reduction of second order
variational problems on G that can be associated with I.

The reduction process can be seen as the projection map π : TG → g of a
globally trivial principal fiber bundle with base manifold g and structure group G.
For matrix groups, such a construction resembles closely a G-structure obtained from
the frame bundle i.e. the collection of all the linear changes of basis on the tangent
bundle, but in general it has to be intended as induced by left (or right) invariance of
G. The mismatch between Lie group exponential map and Riemannian exponential
map implies that the horizontal vectors determined by the Riemannian connection on
TG are not anymore horizontal in the fiber bundle (i.e. they do not reduce “exactly”
as in Lie groups with biinvariant metric). The component which becomes vertical
after the reduction belongs to the vector space (in the semidirect decomposition of
G) and gives an extra drift term to the Euler-Poincaré equations with respect to the
full Euler-Lagrange equations.

The motivation behind this work is generating smooth trajectories for (fully ac-
tuated) mechanical control systems composed of kinetic energy alone and that can be
modeled as actuated rigid bodies evolving on the Special Euclidean group SE(3). The
presence of control inputs allows to force the mechanical system along any suitable
(feasible) trajectory, not necessarily those satisfying Hamilton principle of least action
but rather a user or task defined cost functional. If the actuators are body fixed, then
they form a left-invariant codistribution in the cotangent bundle which fits in with
(and motivates further) the reduction procedure.

It is an elementary fact in calculus of variations that extremals of the energy
functional give geodesic motion through the first variational formula. This leads to
Euler-Lagrange equations or to Euler-Poincaré after the reduction. The corresponding
necessary conditions for a cost function which is the L2 norm of the acceleration were
obtained in [8, 18] for Riemannian manifolds and compact semisimple Lie groups.
They resemble the equations for the Jacobi fields associated with the connection and
they generalize to Riemannian manifolds the standard procedures to generate cubic
splines in Rn. While the reduction for compact Lie groups is quite straightforward (see
[8]), in semidirect products of Lie groups like SE(3) the extra difficulties mentioned
above all arise. In particular, for the same reason that a drift term appears in the
Euler-Poincaré equations, several extra components arise in the reduced necessary
conditions for optimality of the new cost functional. Their explicit calculation is the
main contribution of this paper.

2. Mathematical preliminaries. A Riemannian metric on a smooth manifold
M is a 2-tensor field I that is symmetric and positive definite. I determines an inner
product 〈 · , · 〉 on each tangent space TxM, 〈X, Y 〉 = I(X, Y ), for X, Y ∈ TxM. One
important property of Riemannian metrics is that they allow to convert vectors to
covectors and viceversa. In particular, at each x ∈ M this allows to view the metric
tensor as a map I : TxM→ T ∗xM.

Call D(M) the space of smooth sections of TM. Elements of D(M) are smooth
vector fields on M. An affine connection ∇ is a map taking each pair of vector fields
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X and Y to another vector field ∇XY , called covariant derivative of Y along X, such
that for f ∈ C∞(M)

1. ∇XY is bilinear in X and Y
2. ∇fXY = f∇XY
3. ∇X (fY ) = f∇XY + (LX)Y

where LXf is the Lie derivative of f along X.
Given a curve γ(t) and a vector field X, the covariant derivative of X along γ is

DX
dt = ∇γ̇(t)X. In coordinates x1, . . . , xn, the covariant derivative is

(∇XY )k =
∂Y k

∂xi
Xi + ΓkijX

iY j (2.1)

where X = Xi ∂
∂xi , Y = Y i ∂

∂xi , ∇XY = (∇XY )k ∂
∂xk

and the n3 quantities Γkij are
called Christoffel symbols and are given in by ∇ ∂

∂xi

(
∂
∂xj

)
= Γkij

∂
∂xk

. For a generic

smooth curve γ(t) ∈M the quantity ∇γ̇(t)γ̇(t) = D
dt

(
dγ
dt

)
represents the acceleration

and in fact it reduces to the standard notion of Euclidean acceleration ifM = R
n and

we choose the so-called the Euclidean connection ∇XY = XY k ∂
∂xk

=
(
Xi ∂Y k

∂xi

)
∂
∂xk

,
i.e. the vector field whose components are the directional derivatives of the compo-
nents of Y along X. The length of the smooth curve γ is measured by the functional

`(γ) =
∫ tf

t0

〈γ̇(t), γ̇(t)〉 1
2 dt (2.2)

A vector field Y is said parallel transported along γ if DY
dt = 0. In particular, if γ̇ is

parallel along γ, then γ is called a geodesic:

D

dt

(
dγ

dt

)
= ∇γ̇(t)γ̇(t) = 0 (2.3)

Geodesic motion corresponds to constant velocity and it gives an extremum of the
length functional (2.2), as well as of the kinetic energy integral

∫ tf
t0
〈γ̇(t), γ̇(t)〉dt.

The condition for parallel transport of the vector Y along γ in coordinates becomes
dY k

dt + Γkij ẋ
iY j = 0 and the one for geodesic motion

ẍk + Γkij ẋ
iẋj = 0 (2.4)

Along γ : (t0, tf )→M, for t0 ≤ t1 ≤ t2 ≤ tf , parallel transport defines an operator

P(t1,t2) : Tγ(t1)M→ Tγ(t2)M
X1 7→ X2 = P(t1,t2)X1

(2.5)

which is a linear isomorphism between tangent spaces.
The fundamental theorem of Riemannian geometry says that given an inertia

tensor I on a manifold M there exists a unique affine connection ∇ on M such that
1. ∇ is torsion free:

∇XY −∇YX = [X, Y ] (2.6)

2. the parallel transport is an isometry

Z〈X, Y 〉 = 〈∇ZX, Y 〉+ 〈X, ∇ZY 〉 (2.7)
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for all X, Y, Z ∈ D(M). Such a connection is called the Levi-Civita or Riemannian
connection. From (2.7), we get the Koszul formula:

〈Z, ∇XY 〉 =
1
2

(Y 〈X, Z〉+X〈Z, Y 〉 − Z〈X, Y 〉 − 〈[Y, Z], X〉+

+〈[Z, X], Y 〉+ 〈[X, Y ], Z〉) (2.8)

Condition 2. alone means that ∇ is a metric connection (i.e. ∇I = 0). The “measure”
of the failure of the second covariant derivative to commute is expressed geometri-
cally by the notion of curvature, i.e. the map R : D(M)×D(M)×D(M)→ D(M)
defined by

R(X, Y )Z = ∇X∇Y Z −∇Y∇XZ −∇[X,Y ]Z (2.9)

In coordinates, the coefficient R l
ijk of R

(
∂
∂xi ,

∂
∂xj

)
∂
∂xk

= R l
ijk

∂
∂xl

are given by

R l
ijk =

(
∂Γljk
∂xi

− ∂Γlik
∂xj

)
+
(
ΓmjkΓlim − ΓmikΓljm

)
2.1. The variational principle of Hamilton. The geodesic equation (2.3) can

be obtained from standard calculus of variation on the Riemannian manifold (M, I),
see for example [9]. Given the curve γ : [t0, tf ]→M consider proper variations of γ
i.e. the family of fixed end-point curves G : (−ε, ε)× [t0, tf ]→M such that

G0(t) = G(s, t)|s=0 = γ(t) ∀ t ∈ [t0, tf ]

and

Gs(t0) = G(s, t0)|s=const = γ(t0), Gs(tf ) = G(s, tf )|s=const = γ(tf ) ∀ s ∈ (−ε, ε).

In the family of curves G, the curves with fixed s, Gs(t) = G(s, t)|s=const, are called
main curves and those with fixed t, G(t)(s) = G(s, t)|t=const, transverse curves. At
infinitesimal level, we call a variation field δγ the tangent vector with respect to a
transverse variation taken for a fixed t ∈ [t0, tf ] and computed at s = 0:

δγ(t) =
d

ds
G(t)(s)

∣∣∣∣
s=0

The variation field is proper if δγ(t0) = δγ(tf ) = 0. If G is proper, then δγ is also
proper. It is a standard result that any C2 vector field along γ is the variation field of
some variation of γ, and that if δγ is proper so is the corresponding variation. This
is proven via the Riemannian exponential map Exp associated with the Levi-Civita
connection ∇: the variation corresponding to a vector field V (t) based at γ(t) will
be of the type G(s, t) = Exp (sV (t)). In fact, for a fixed t̄ ∈ [t0, tf ], if we have
G(t̄)(s) = Exp (sV (t̄)) then

δγ(t̄) =
d

ds
Exp (sV (t̄))

∣∣∣∣
s=0

= V (t̄)

Another standard result is the symmetry lemma, that allows to exchange the order of
the mixed second order derivatives along main and transverse curves. Calling

S(s, t) =
d

ds
G(t)(s) and T (s, t) =

d

dt
Gs(t) (2.10)
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(so that S(0, t) = δγ(t) and T (0, t) = γ̇(t)), we have ∇ST = ∇TS. For a torsion-
free connection, this implies, from (2.6), that the vector fields T and S commute
[T, S] = 0. Furthermore, since the Riemannian connection is an isometry, from (2.7)
we have

d

dt
〈S, T 〉 = T 〈S, T 〉 = 〈∇TS, T 〉+ 〈S, ∇TT 〉 (2.11)

The Hamilton principle for the functional `(γ) gives the curve γ(t) for which ` is
stationary under proper variations. Considering, for sake of simplicity, in place of `
the energy functional

E(γ) =
∫ tf

t0

〈γ̇, γ̇〉dt

we have

d

ds
E (Gs(t))

∣∣∣∣
s=0

=
d

ds

∫ tf

t0

〈T (s, t), T (s, t)〉dt
∣∣∣∣
s=0

=
∫ tf

t0

〈∇ST, T 〉dt
∣∣∣∣
s=0

=
∫ tf

t0

〈∇δγ γ̇, γ̇〉dt =
∫ tf

t0

〈∇γ̇δγ, γ̇〉dt by the symmetry lemma

=
∫ tf

t0

(
d

dt
〈δγ, γ̇〉 − 〈∇γ̇ γ̇, δγ〉

)
dt by (2.11)

= 〈δγ, γ̇〉|tft0 −
∫ tf

t0

〈∇γ̇ γ̇, δγ〉dt

Since δγ(t0) = δγ(tf ) = 0, we obtain the first variation formula

d

ds
E (Gs(t))

∣∣∣∣
s=0

= 0⇐⇒ ∇γ̇(t)γ̇(t) = 0 (2.12)

which corresponds to the Euler-Lagrange equations for a Lagrangian equal to kinetic
energy only.

Considering only variations through geodesics, i.e. families G(s, t) such that all
the main curves Gs(t) are geodesics, a Jacobi field V is a vector field along γ satisfying
the Jacobi equation

∇2
γ̇V +R(V, γ̇)γ̇ = 0 (2.13)

A vector field is a Jacobi field if and only if it is the variation field of some variations
of γ. The Jacobi equation is essentially a linear system of second order differential
equations in V along γ. If properly initialized (its initial values being γ(t0), V (t0) and
∇γ̇V (t0)), then in the “variations through geodesics” case it has a unique solution for
all t. This implies by (2.5) that the value of V (tf ) = P(t0,tf )V (t0) is uniquely defined
from the triple of initial data.

2.2. Second order structures on a Riemannian manifold. Assume that
the coordinate chart x1, . . . , xn is valid in a neighborhood U of x ∈ M. If v ∈ TvM
is a tangent vector, its coordinates description is naturally given by v = vi ∂

∂xi . If τ :
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TM→M is the tangent bundle projection, (x1, . . . , xn, v1, . . . , vn) are called induced
coordinates on τ−1(U) and they provide a basis of tangent vectors of T(x,v)TM:(
∂
∂x1 , . . . ,

∂
∂xn ,

∂
∂v1 , . . . ,

∂
∂vn

)
. By taking the tangent map τ∗ of the projection τ at

the point (x, v) of TM, τ∗ : T(x,v)TM→ Tx=τ(v)M = τ−1(x), one can define the
vertical subspace of the tangent bundle at (x, v)

V(x,v) = ker τ∗ =
{
w ∈ T(x,v)TM s.t. τ∗(w) = 0 ∈ TxM

}
The vertical subspace is the subspace of T(x,v)TM whose vectors are tangent to the
fiber τ−1(x) = TxM. Such vectors are called vertical lifts and can be computed as
follows: given the tangent vector u ∈ TxM the vertical lift uh of u from Tτ(v)M to
T(x,v)TM is

uv =
d

dt
(v + tu)

∣∣∣∣
t=0

So, for example,
(
∂
∂xi

)v
=
(
∂
∂vi

)
and a basis for V(x,v) is given by

(
0, ∂

∂vi

)
.

The complementary subspace to V(x,v) in T(x,v)TM, in order to be identified,
requires a notion of parallelism to be defined, for example through the Riemannian
connection ∇. The horizontal lift of u ∈ TxM to a tangent vector on T(x,v)TM,
in fact, is defined via the parallel transport of a vector field V ∈ D(M) such that
V (0) = v along a curve σ(t) ∈ M such that σ(0) = x and σ̇(0) = u (see [7] Ch.
13). In fact, calling σh = (σ, V ) the horizontal lift of the curve σ through (x, v), the
condition ∇uV = 0 (in coordinates V̇ i + ΓijkV

juk = 0) provides an expression for the
derivative of V at t = 0 and the horizontal lift uh of u from TxM to T(x,v)TM can
be defined as the tangent vector to σh at t = 0:

dσh

dt
= uh s. t. σh(0) = (σ(0), V (0))

If u = ui ∂
∂xi , its expression in coordinates

σ̇ = u

v̇i = −Γijkv
juk

or

uh = uk
∂

∂xk
− Γijkv

juk
∂

∂vi
(2.14)

Since τ∗(uh) = u, horizontal lifts are indeed complementary to the vertical subspace
and in this sense they form the horizontal subspace H(x,v) of T(x,v)TM whose basis is
given by the lifting of the ∂

∂xk
:(
∂

∂xk

)h
=

∂

∂xk
− Γijkv

j ∂

∂vi

Equivalently, H(x,v) can be defined in terms of sections of the tangent bundle, i.e. of
smooth maps ς : M → TM such that τ(ς(x)) = x ∀x ∈ M, by taking the push
forward at u ∈ Tτ(v)M of the sections that are parallel transported along the vector
u

H(x,v) = {ς∗u s.t. ∇uς = 0} (2.15)
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For a curve γ ∈ M which is a geodesic, the horizontal lift (γ, γ̇) is also called the
natural lift. In this case u coincides with v and therefore the tangent vector to (γ, γ̇)
at (x = γ(0), v = γ̇(0)) is the horizontal lift vh ∈ T(x,v)TM of v. The vector field
Γ on TM such that Γ(x,v) = vh is called the geodesic spray of the connection. From
(2.14), by using the same coordinate notation as above for γ(t)

Γ(x,v) = vk
∂

∂xk
− Γijkv

jvk
∂

∂vi
(2.16)

Γ is characterized by integral curves that are natural lifts of geodesics. Written as a
system of first order equations, the integral curves of Γ are (compare with (2.4))

ẋk = vk

v̇k = −Γkijv
ivj

From (2.16), both components are homogeneous of degree one in the fiber coordinate
vi.

2.3. Simple mechanical control systems. If we add a forcing term to the
geodesic equations (2.3), we obtain a so-called simple mechanical control system [13]
(without potential):

∇γ̇ γ̇ = F (γ) (2.17)

where F = (F1, . . . , Fn) is the control input distribution ofM. The vector fields Fi =
Fi(γ) are obtained by lowering the indices of the covectors F̃i physically representing
the forces or torques applied to the system: Fi = I

−1F̃i. Assuming F1, . . . , Fn to be
linearly independent on M, then we have a fully actuated mechanical system. The
system of first order differential equations corresponding to (2.17) was shown in [14]
to be given by the second order vector field on TM obtained from the geodesic spray
plus the vertical lifts of the input distribution:

Γ + F v (2.18)

having integral curves

ẋk = vk

v̇k = −Γkijv
ivj + F k

From a control theory point of view, Γ is the drift of the system of first order differ-
ential equations and F v =

(
0 ∂
∂xk

+ F k ∂
∂vk

)
is the corresponding input vector field.

3. A second order variational problem. Following [18, 4, 20], the problem of
constructing trajectories between given initial and final position and velocity data on
M can be formulated as an optimization problem on a Riemannian manifold, taking
as cost functional the square of the L2 norm of the acceleration:

J =
∫ tf

t0

〈∇γ̇ γ̇, ∇γ̇ γ̇〉 dt (3.1)

J has extremals that are generalizations to Riemannian manifolds of Euclidean cubic
splines. Its first variation gives the necessary conditions for curves to be extremals.
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Theorem 3.1. ([8, 18]) A necessary condition for a smooth curve γ(t) ∈M,
t ∈ [t0, tf ], such that γ(t0) = g0, γ(tf ) = gf , dγ

dt

∣∣∣
t=t0

= v0 and dγ
dt

∣∣∣
t=tf

= vf , to be an

extremum of J is that

∇γ̇∇γ̇∇γ̇ γ̇ +R(∇γ̇ γ̇, γ̇)γ̇ = 0 (3.2)

Proof. The proof has already appeared in the above mentioned references. It is
repeated here only for sake of completeness. It follows the same arguments used in
finding the critical curves of the energy functional. Furthermore, it makes use of the
following symmetry of the curvature tensor:

〈R(V, W )Z, U〉 = 〈R(U, Z)W, V 〉 (3.3)

d

ds
J (Gs(t))

∣∣∣∣
s=0

=
∫ tf

t0

〈∇S∇TT, ∇TT 〉dt
∣∣∣∣
s=0

=
∫ tf

t0

〈∇T∇ST +R(S, T )T, ∇TT 〉dt
∣∣∣∣
s=0

by (2.9)

=
∫ tf

t0

〈∇γ̇∇δγ γ̇ +R(δγ, γ̇)γ̇, ∇γ̇ γ̇〉dt

=
∫ tf

t0

(
d

dt
〈∇δγ γ̇, ∇γ̇ γ̇〉 − 〈∇2

γ̇ γ̇, ∇δγ γ̇〉+ 〈R(δγ, γ̇)γ̇, ∇γ̇ γ̇〉
)
dt by (2.11)

= 〈∇δγ γ̇, ∇γ̇ γ̇〉|tft0 +

+
∫ tf

t0

(
− d

dt
〈∇2

γ̇ γ̇, δγ〉+ 〈∇3
γ̇ γ̇, δγ〉+ 〈R(δγ, γ̇)γ̇, ∇γ̇ γ̇〉

)
dt by (2.11)

=
(
〈∇δγ γ̇, ∇γ̇ γ̇〉 − 〈∇2

γ̇ γ̇, δγ〉
)∣∣tf
t0

+

+
∫ tf

t0

(
〈∇3

γ̇ γ̇, δγ〉+ 〈R(∇γ̇ γ̇, γ̇)γ̇, δγ〉
)
dt by (3.3)

Since the variation is assumed proper, δγ and ∇δγ γ̇ both vanish at the end points
and the result follows.

The condition (3.2) replaces the geodesic condition (2.3) in the sense that it super-
imposes a minimum acceleration motion to the “natural” geodesic motion associated
with I.

The resulting trajectory is C∞ on M and furthermore, by matching initial con-
ditions of a new interval with the terminal data of the previous one, C1 piecewise
smooth trajectories on M can be obtained. These are particularly useful for second
order control systems as they represent the simplest curves feasible under the ordi-
nary assumption of piecewise continuous, measurable control inputs, generalization to
a Riemannian manifold of Euclidean cubic splines. Eq. (2.17) provides the expression
for the control corresponding to a solution of (3.2). The full actuation of the mechan-
ical control systems is a sufficient condition for free feasibility of the trajectories of
(3.2).

In the extra smoothness assumption that also the control input is continuous
between different intervals, we can obtain directly an expression for the controller out
of (3.2). In order to set up the problem correctly, one needs an initial value for F i.e.
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F (t0) = ∇v0v0|γ=g0
which can replace the final data vf . This type of problems can

be referred to as “C2 dynamical interpolation problem” (see [8]). If F (t0) is used in
conjunction with vf and F (tf ) = ∇vf vf

∣∣
γ=gf

then one can obtain a C3 curve in the
patching of intervals. Using (2.17) to insert the control input F into (3.2), one obtains
an equation that looks exactly like the Jacobi equation for F . However, the curve γ
in this case is not a geodesic, instead it has to be computed together with the control
action. Hence, what is used in the Proposition below is not the Jacobi equation for
∇. If we assume that the unknown variables are γ̇ and F , then the equivalent of
Theorem 3.1 is:

Proposition 3.2. If the control input is assumed to be in the class of continuous
functions over M, then the extremals of the cost function J can be obtained by the
solutions of the following system of differential equations in the unknowns γ̇ and F :

∇2
γ̇F +R(F, γ̇)γ̇ = 0 subject to ∇γ̇ γ̇ = F (3.4)

with the boundary conditions γ(t0) = g0, γ̇(t0) = v0, F (t0) = ∇v0v0|γ=g0
and γ(tf ) =

gf . Indeed the solution γ̇ of the problem is not a constant velocity vector (i.e. the
tangent vector of a geodesic curve). The trajectory γ itself, if needed, can be recovered
by integration of γ̇ from the initial condition g0.

From (2.17), instead of the acceleration, the cost functional (3.1) could be for-
mulated in terms of the input covector forces without any substantial modification:
J̃ =

∫ T
0
〈F̃ , F̃ 〉 dt =

∫ T
0
〈I∇γ̇ γ̇, I∇γ̇ γ̇〉 dt.

4. Riemannian connection on a semidirect product of Lie groups. For
any g ∈ G, a left translation on G is a transitive and free action of the group on itself

Lg : G→ G (4.1)
h 7→ Lg(h) = gh h ∈ G

Since G is a Lie Group, Lg is a diffeomorphism of G for each g with respect to the
identity element e of the group:

Lg : G→ G (4.2)
e 7→ Lg(e) = g

In fact Lg ◦ Lh = gh ⇒ (Lg)
−1 = Lg−1 . Similar things hold for a right translation

Rg. By deriving the left translation (4.1), we obtain left invariant vector fields. A
vector field X on G is called left invariant if for every g ∈ G we have L∗gX = X

i.e. (ThLg) X(h) = X(gh) ∀ h ∈ G. The set XL(G) of left invariant vectors on G is
isomorphic to the Lie algebra g = TeG.

The Lie group is made in a Riemannian manifold by defining an inner product
on TeG = g and propagating it on TG by left translation. This makes G automat-
ically into a complete homogeneous Riemannian manifold. We are interested in the
case in which the metric tensor I is compatible with the kinetic energy of a simple
mechanical system having G as configuration space, and therefore we restrict to sym-
metric positive definite I. In this case, the geodesics of the Levi-Civita connection are
the solutions of the Euler-Lagrange equations for an invariant Lagrangian function
corresponding to the kinematic energy.

The class of Lie groups we consider here has the structure of a semidirect product
of a Lie group K and a vector space V : G = KsV . As a manifold, G is the Cartesian
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product of K and V , but the Lie group multiplication includes the linear action of K
on V , K → Aut(V ), so that the group multiplication looks like

(k1, u1) (k2, u2) = (k1k2, u1 + k1u2) k1, k2 ∈ K, u1, u2 ∈ V

Consequently, the Lie algebra g of G includes the induced action k→ End(V ) and is
therefore the semidirect sum of k and V with Lie bracket

[(K1, v1), (K2, v2)] = ([K1, K2], K1v2 −K2v1) K1, K2 ∈ k, v1, v2 ∈ V

If K has no nontrivial ideals, V being abelian forms an ideal in g and therefore
[K, v] ∈ V for all K ∈ k and v ∈ V .

We assume that V has no nonzero fixed points under K.
Since K acts linearly on the vector space V , the whole Lie group G acts affinely

on V :

(k, u1)u2 = ku2 + u1 ∀ (k, u1) ∈ G u2 ∈ V

Hence, if Y = (K, v) ∈ g and u ∈ V , the infinitesimal generator of the one-parameter
subgroup on V , φY (t)u = etYu, is the affine vector field YG(u) = Ku+ v.

The Riemannian connection ∇, being defined from a left-invariant metric, retains
the left-invariant property along the coordinate directions of an invariant basis on TG
Calling Ai the elements of an orthonormal basis of left invariant vector fields:

∇gAi (gAj) = g∇AiAj = ΓkijgAk (4.3)

for all g ∈ G. From (2.1), since the Γkij are not tensorial, left invariance of the
connection has to be intended with respect to affine transformations, i.e. if X is
an infinitesimal affine transformation and φX the corresponding local one-parameter
group of local transformations in G generated by X (see Prop. 1.4, Ch.VI of [11]):
(φX)∗ (∇Y Z) = ∇(φX)∗(Y ) (φX)∗ (Z) ∀ Y, Z ∈ D(G). The infinitesimal generator
above YG(u) is an example of how one-parameter subgroups affinely generated emerge
in a semidirect product.

In correspondence of left invariant vector fields Y and Z, the equation (2.7) for
the parallel transport simplifies to

〈∇XY, Z〉+ 〈Y, ∇XZ〉 = 0 (4.4)

since 〈Y, Z〉 is a constant.
A constant metric quadratic form like I, interpreted as an inertia tensor, is a map

I : g→ g∗ the dual of g. Using ad∗X, the dual of adX, defined as (adXZ;ψ) = (Z; ad∗Xψ),
X,Z ∈ g , ψ ∈ g∗ and ( · ; · ) indicating the R-valued standard pairing between a Lie
algebra and its dual, we get

〈adXZ,Y〉 = (adXZ; IY) = (Z; ad∗XIY) = 〈Z, I−1ad∗XIY〉 (4.5)

A vector field X on a Riemannian manifold is called a Killing vector field (or
an infinitesimal isometry) if the local one-parameter subgroup of transformations
generated by X via the exponential map of the Riemannian connection (but not
of the Lie group exponential map in the case we are considering, see below) in a
neighborhood of each point consists of isometries. We have the following equivalent
characterizations:

Proposition 4.1. ([11] Prop. 3.2 Ch. VI) Given a vector field X on a
Riemannian manifold with metric connection (G, I), the following are equivalent:
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(i) X is a Killing vector field
(ii) LXI = 0
(iii) the Killing equation holds:

X〈Y, Z〉 = 〈[X, Y ], Z〉+ 〈Y, [X, Z]〉 ∀ Y, Z ∈ D(G) (4.6)

or equivalently

〈∇YX, Z〉+ 〈Y, ∇ZX〉 = 0 ∀ Y, Z ∈ D(G) (4.7)

(iv) the linear map AX given by AXY = −∇YX, Y ∈ D(G) is skew symmetric
with respect to 〈 · , · 〉 everywhere in G, i.e. 〈AXY, Z〉+ 〈Y, AXZ〉 = 0 ∀ Y,Z ∈ D(G).

From (4.4), if X ∈ D(G), for left invariant vector fields Y, Z ∈ g (4.6) reduces to

X〈Y, Z〉 = 〈[X, Y], Z〉+ 〈Y, [X, Z]〉 = 0

We need to adapt to the case of trivially reductive homogeneous spaces given by the
left action of a Lie group on itself the Theorem 3.3, Chapter X of [11]:

Theorem 4.2. Given (G, I), the Riemannian connection for I is expressed as

∇XY =
1
2

[X, Y] + U(X, Y) (4.8)

where U(X, Y) is the symmetric bilinear mapping g× g→ g defined by

〈U(X, Y), Z〉 =
1
2

(〈adZX, Y〉+ 〈X, adZY〉) (4.9)

for all X, Y, Z ∈ g.
Corollary 4.3. If K is semisimple compact and the biinvariant metric is chosen

on it, then U(X, Y) ∈ V for all X, Y ∈ g.
Applying the pairing (4.5) to U(X, Y) then we have:
Proposition 4.4. The left-invariant covariant derivative (4.3) can be expressed

as

∇XY =
1
2
(
[X,Y]− I−1 (ad∗XIY + ad∗YIX)

)
(4.10)

Proof. Using (4.5) to extract Z on both terms on the right hand side expression
(4.9) the result follows.

A consequence is that the exponential map of the Lie group does not agree with
the Riemannian exponential map corresponding to I:

Proposition 4.5. The one-parameter subgroups of G do not coincide with the
geodesics of I.

Proof. The one-parameter subgroups of a Lie group like G correspond to the
autotransported curves through the identity of an affine connection if and only if
∇XX = 0 for all the Lie algebra valued vectors X ([11] Prop.2.9 Ch.X).

In fact, using the language of [11], ∇XX = 0 means that the natural torsion-free
and canonical connections can be made to have the same geodesics. The coincidence
holds only when the bilinear map U(X, Y) above is compatible with the metric in the
following way:

Proposition 4.6. Given a positive definite Riemannian metric on a group man-
ifold G:

∇XX = 0 ∀ X ∈ g ⇐⇒ 〈U(X, Y), Z〉 = 0 ∀ X, Y, Z ∈ g
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Proof. The proof can be obtained from part 2 of Theorem 3.3 Ch.X in [11]. To see
it directly use (4.8): assuming the right hand side expression holds true, if ∇XX 6= 0
it has to be U(X, X) 6= 0 but then it is enough to choose a suitable Z to obtain
〈U(X, Y), Z〉 6= 0 for some X, Y, Z therefore getting into contradiction. Similarly, on
the other direction, assume ∇XX = 0. If 〈U(X, Y), Z〉 6= 0 for some X, Y, Z then
U(X, Y) 6= 0 and therefore also U(X̃, X̃) 6= 0 for some X̃ because U is a symmetric
bilinear map, which is again a contradiction.

The condition 〈U(X, Y), Z〉 = 0 for all X, Y, Z ∈ g holds for the so-called naturally
reductive homogeneous spaces. This is the case for example of a compact Lie groups
with bi-invariant metric: its covariant derivative is well-known to be simply ∇XY =
1
2 [X, Y].

It is perhaps worth to make a further comment on the relation between adX , left
invariance and isometry. Since ∇XY = adXY −AXY , rewriting (2.7) as

X〈Y, Z〉︸ ︷︷ ︸
(∗)

= 〈adXY, Z〉+ 〈Y, adXZ〉+ 〈AXY, Z〉+ 〈Y, AXZ〉︸ ︷︷ ︸
(∗∗)

(4.11)

we have:
(i) if Y, Z are left invariant, then (∗) = 0
(ii) if X is a Killing vector, (∗∗) = 0
(iii) if Y, Z are left invariant and X is a Killing vector, then adX is skew-

symmetric with respect to 〈 · , · 〉, i.e. the following equivalent quantities

〈adXY, Z〉+ 〈Y, adXZ〉 = 2〈U(Y, Z), X〉 = −〈I−1 (ad∗Y IZ + ad∗ZIY ) , X〉 (4.12)

are all vanishing.
A Lie group admits a bi-invariant metric if and only if adX is skew-symmetric with
respect to 〈 · , · 〉 for all X ∈ g ([17], Lemma 7.2). In our case, even considering left
invariant vector fields, this is not the case as can be deduced from the expression of
U(Y, Z) calculated in Proposition 4.4.

Given a vector field X ∈ g, X = aiAi call Ẋ = ∂ai

∂t Ai. The local coordinate
chart at γ ∈ G is given by left translating the time-1 Lie group exponential map of
A1, . . . , An: xi = γeAi (so that a basis of tangent vectors at γ is indeed ∂

∂xi = Bi =
γAi). Such coordinates are not Riemannian normal coordinates since the Christoffel
symbols are nonnull. The covariant derivative of Y = γY, Y = biAi, in the direction
of X = γX = γaiAi becomes:

∇XY = (∇XY )k Bk =
(
ai
∂bk

∂xi
+ aibjΓkij

)
Bk

=
((
LXbk

)
+ aibjΓkij

)
γAk = γ

(
LXβk

)
Ak + γaibj∇AiAj by (4.3)

= γ
((
LXbk

)
Ak +∇XY

)
(4.13)

Left invariance allows to express vector fields on G and vector fields on TG by means
of their pull-back to g with respect to the same basis i.e. ∂

∂xi = γAi and ∂
∂vi = γAi,

i = 1, . . . , n. The parallel transport of any Y = γbiAi along γ gives rise to a horizontal
lift of the curve γ̇ = γX to the tangent bundle curve γh = (γ, Y ) having as tangent
vector

Xh =
dγh

dt
= γXh =

(
γakAk ; −γΓkija

ibjAk
)
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(the first component living on TγG, the second on T(γ,γY)TG). For matrix groups,
∇γ̇Y = 0 corresponds to a linear frame being parallel transported along γ, see (2.15).
Calling Ẋ = ∂bi

∂t Ai, in general, from (4.8), the covariant derivative is decomposed in
the three parts:

γ

(
Ẏ +

1
2

[X, Y] + U(X, Y)
)

= 0

Therefore a coordinate independent expression for Xh is

Xh =
(
γX ; −γ(

1
2

[X, Y] + U(X, Y))
)

(4.14)

whose integral curves are

γ̇ = γX

γẎ = −γ∇XY = −γ(
1
2

[X, Y] + U(X, Y))

5. The fiber bundle picture for group symmetries. Consider the tangent
bundle TG of the n-dimensional Lie group G. For each g ∈ G, the fiber τ−1(g) of this
tangent bundle is the tangent space at g, TgG, isomorphic to Rn.

Left invariance gives to the tangent bundle the structure of principal fiber bundle
with structure group G and base manifold g, by using the isomorphism between TgG
and TeG = g that left (or right) translation implies. The three properties of a principal
fiber bundle (see [11] Ch. II, p. 50) are trivial to verify for TG(g, G). In fact, g is
the quotient space of TG by the equivalence relation induced by G, the projection
π : TG→ g is the left translation itself and the fibers π−1(X), X ∈ g, are isomorphic
to G since the left invariant action is free and transitive. Furthermore, by considering
left invariant vector fields, TG is made into a globally trivial fiber bundle via the
map TgG → G × g, (g, vg) 7→ (g, Lg−1∗vg). For a generic smooth manifold, there
always exists a principal fiber bundle similar to the one considered here and it is the
frame bundle GLn(R) obtained by all possible linear changes of basis of the tangent
space (isomorphic to Rn) at any point of the manifold. If the smooth manifold is a
matrix group G, then the fiber bundle we are considering is normally referred to as
G-structure (of G itself) and it is obtained by “reducing” GLn(R) to its subgroup G.

From (2.15), the condition ∇γ̇Y = 0 allows to describe vectors fields of D(G)
that are horizontal in the tangent bundle with respect to ∇ and the lifting procedure
described in Section 2.2. From Propositions 4.5 and 4.6, the compatibility condition
between horizontal curves of I and horizontal curves of the fiber bundle structure of
G (i.e. the “G-structure” of G itself) is that ∇ invariant to left translations and that
∇XX = 0. In fact, invariance plus ∇XX = 0 means that the parallel displacement can
be carried out by left translations regardless of the path to follow.

The appearing of a nonvanishing term U(X, Y) implies that the reduction process
produces a “geometric phase”, i.e. out of horizontal vector fields (in the tangent
bundle) one also obtains a vertical vector field (in the fiber bundle). From (4.8), this
happens whenever ∇XY is not completely skew symmetric.

So for the horizontal lift (4.14) the T(γ,γY)TG term splits into the horizontal
component (in the fiber bundle) −γ 1

2 [X, Y] and the vertical one −γU(X, Y).
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6. Reduction of Hamilton principle by group invariance. The variational
principle as stated in Section 2.1 holds for generic Riemannian manifolds and does
not take advantage of the group structure of G. In particular, the left invariance
properties of a Lie group allow to reduce the infinitesimal variations from the tangent
bundle to the corresponding Lie algebra: this subject is treated extensively in the
book [16]. Also the semidirect product structure of G can be exploited explicitly in
what is called reduction by stages, especially when V has nonzero fixed points under
K and the corresponding isotropy subgroup is of particular interest, like in the heavy
top case [6].

Left invariance allows to express the vector field γ̇ ∈ TG in terms of its pullback to
the identity: Lγ∗γ̇ = γ−1γ̇ ∈ g. Consider proper variations G(s, t) of γ(t) with tangent
bundle infinitesimal variations S(s, t) = d

dsG
(t)(s) and T (s, t) = d

dtGs(t), along the
main and transverse curves respectively. Call T(t) and S(t) the g-valued infinitesimal
variations corresponding to γ̇ and δγ. Since G0(t) = γ(t), they are uniquely defined
by the two relations:

T (0, t) = γ̇(t) = G0(t)T(t) = γ(t)T(t)
S(0, t) = δγ(t) = G0(t)S(t) = γ(t)S(t)

(6.1)

We need to compute the covariant derivatives ∇δγ γ̇ and ∇γ̇δγ in terms of T and
S. Considering the basis A1, . . . , An of g, in coordinates T(t) = αi(t)Ai and S(t) =
βi(t)Ai. Call Ṫ = ∂αi

∂t Ai and T′ = ∂αi

∂s Ai and similarly for S. The coordinate functions
αi and βi are defined along the family of curves G. In particular, from (2.10), along
the main and transverse curves Gs(t) and G(t)(s) the Lie derivatives LT · and LS ·
becomes derivatives in t and s respectively. Therefore Lγ̇αk = ∂αk

∂t and Lδγαk = ∂αk

∂s
and similarly for βk. Therefore (4.13) becomes the following:

Proposition 6.1. Consider the Lie group G with left-invariant Riemannian
connection ∇. For the proper variations G(s, t), the covariant derivatives ∇γ̇δγ and
∇δγ γ̇ have the following left-invariant expressions:

∇γ̇δγ = γ
(
Ṡ +∇TS

)
∇δγ γ̇ = γ (T′ +∇ST)

(6.2)

Proof.

∇γ̇δγ = ∇γT(t)γS(t) = ∇αi(t)Biβ
j(t)Bj

=
(
Lγ̇βj

)
Bj + αiβj∇BiBj =

∂βj

∂t
Bj + γαiβj∇AiAj by (4.3)

= γ
∂βj

∂t
Aj +

1
2
γαiβj

(
[Ai, Aj ]− I−1ad∗AiIAj − I

−1ad∗Aj IAi
)

= γ
∂βj

∂t
Aj +

1
2
γ
(
[T, S]− I−1ad∗TIS− I−1ad∗SIT

)
= γ

(
Ṡ +∇TS

)
and similarly

∇δγ γ̇ = ∇γS(t)γT(t) = γ
∂αi

∂s
Ai +

1
2
γ
(
[S,T]− I−1ad∗SIT − I−1ad∗TIS

)
= γ (T′ +∇ST)
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The presence of two terms in both the covariant derivatives (6.2) is due to the
affine nature of the connection. The terms T′ or Ṡ appear when the covariant derivative
is calculated out of the identity of the group. Here and in the following the covariant
derivatives involving T or S are always calculated in the identity element of the group.

Lemma 6.2. (Symmetry lemma for reduction by group invariance in the
Riemannian case) In the case of group manifold with Riemannian connection, the
Lie algebra valued mixed derivatives are related by

T′ = Ṡ (6.3)

where T and S are respectively the Lie algebra valued infinitesimal variations for γ̇
and δγ defined in (6.1). Furthermore

∇TS = ∇ST (6.4)

Proof. From ∇γ̇δγ = ∇δγ γ̇ and the expression (6.2) for the two covariant deriva-
tives:

T′ = Ṡ + [T, S] (6.5)

But using left invariance: [T, S] = γ−1[γT, γS] = γ−1[γ̇, δγ] = 0 by the symmetry
lemma. Consequently also (6.4) follows.

Notice that this is true only because we have chosen a torsion-free connection. In
general when a non-Riemannian connection is chosen on the Lie group (for example the
(+) or (−) canonical connections of Cartan), the “covariant infinitesimal variations”
for the reduced principle have the more general expression (6.5), see [15] and references
therein.

In general, it is not possible to conclude on T and S being Killing vector fields
without knowing the metric tensor I. By definition of Levi-Civita connection, the
parallel transport along γ leaves the inner product invariant. The isometry (4.4)
which correspond to parallel transport for ∇ along γ for left invariant vector fields
splits after the reduction into two types of Lie algebra valued infinitesimal covariant
variations, those indicated by “ ˙ “ (or “ ′ “ ) and those by the covariant derivative
symbol. For left invariant vector fields Y, Z ∈ g along the curve γ of tangent vector
γ̇ = γT, abusing notation one could write:

d

dt
〈Y, Z〉 = ˙〈Y, Z〉+∇T〈Y, Z〉 = 0

where ˙〈Y, Z〉 = 〈Ẏ, Z〉+ 〈Y, Ż〉 and∇T〈Y, Z〉 = 〈∇TY, Z〉+ 〈Y, ∇TZ〉 are, respectively,
the affine part and the linear part of the parallel transported inner product along γ.
This complicates the expression for the reduced equations as none of the infinitesimal
variations alone is Killing. However, the following proposition shows that each of
them respects (4.4).

Proposition 6.3. Given the left invariant vector fields T, Y, Z ∈ g, the equation
(4.4) for parallel transport of the inner product along a curve γ ∈ G with tangent
vector T = γT splits into the two relations:

〈Ẏ, Z〉 = −〈Y, Ż〉 (6.6)
〈∇TY, Z〉 = −〈Y, ∇TZ〉 (6.7)
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Proof. Straightforward calculation from (2.11):

d

dt
〈γY, γZ〉 = 〈∇γTγY, γZ〉+ 〈γY, ∇γTγZ〉

= 〈γ
(
Ẏ +∇TY

)
, γZ〉+ 〈γY, γ

(
Ż +∇TZ

)
〉

i.e.
d

dt
〈Y, Z〉 = 〈Ẏ, Z〉+ 〈Y, Ż〉+ 〈∇TY, Z〉+ 〈Y, ∇TZ〉

0 = 〈Ẏ, Z〉+ 〈Y, Ż〉

from left invariance of the metric and (4.4).
Corollary 6.4. For the family of variations G(s, t) of γ, with the notation

above,

〈Ṡ, T〉 = −〈S, Ṫ〉 (6.8)
〈∇TS, T〉 = −〈∇TT, S〉 (6.9)
〈∇SS, T〉 = −〈S, ∇ST〉 (6.10)

When the homogeneous space is naturally reductive, ∇TT = 0 implies in (6.9) that
also 〈∇TS, T〉 = 0 and therefore the situation is much simpler.

Remark 1. ∇TS = ∇ST is symmetric and belongs to V . In fact, from (4.10)
and [T, S] = 0

∇TS = ∇ST = U(S, T) = −1
2
I
−1 (ad∗SIT + ad∗TIS)

Another consequence of [T, S] = 0 is the following:
Remark 2. For the reduced infinitesimal variations of G(s, t), the covariant

derivatives are vertical in the fiber bundle.
From the reduced symmetry lemma we obtain the Euler-Poincaré equations. The

result is well-known (see [16]) although it is normally not obtained using exclusively
the tools from Riemannian geometry as we do here.

Theorem 6.5. (Reduced Hamilton principle) For (G, I), the critical curves
of the left invariant energy functional E =

∫ tf
t0
〈T, T〉dt, where T = γ−1(t)γ̇(t), in cor-

respondence of proper variations G(s, t) (and of their “covariant infinitesimal varia-
tions” ), are given by the Euler-Poincaré equations

Ṫ = −∇TT = I
−1ad∗TIT (6.11)

Proof. The proof can be obtained directly by inserting into the first variation
formula (2.12) the value of the covariant derivative (6.2). Likewise, going through the
reduction of the functional E :

d

ds
E (Gs(t))

∣∣∣∣
s=0

=
∫ tf

t0

〈∇ST, T 〉dt
∣∣∣∣
s=0

=
∫ tf

t0

〈T′ +∇ST,T〉dt

= −
∫ tf

t0

〈Ṫ, S〉dt−
∫ tf

t0

〈∇TT, S〉dt by (6.8) and (6.9)

= −
∫ tf

t0

〈Ṫ +∇TT, S〉dt
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The geodesic spray whose integral curves are the Euler-Poincaré equations (6.11)
is

Γ = γG = γ (T ; −U(T, T))

The component in T(γ,γT)TG is purely symmetric and therefore it is vertical in the
fiber bundle. In fact, it disappears on naturally reductive homogeneous spaces, where
the reduced Euler-Lagrange equations (6.11) have only a left hand side: γ̇ = γT, Ṫ = 0.

If the mechanical system has body fixed actuators, the input vector fields are
already left invariant F = γF. Therefore the reduction process under investigation
comes as natural simplification also for the control problems. For example, the forced
second order vector field (2.18) reduces to

Γ + F v = γ (T ; −U(T, T) + F)

7. Reduction of the second order variational problem. When reducing
higher order covariant derivatives, the two components of the covariant derivative
mentioned in the previous Section mix up. For example, the “ ˙ ” part, applied to
∇XY results into:

˙(∇XY) =
∂aibj

∂t
∇AiAj =

(
∂ai

∂t
bj + ai

∂bj

∂t

)
∇AiAj = ∇ẊY +∇XẎ (7.1)

A few useful relations are:
Proposition 7.1. For the family of variations G(s, t) on (G, I):

∇δγ∇γ̇ γ̇ = γ
(

(Ṫ)′ +∇SṪ +∇ṠT +∇T Ṡ +∇S∇TT
)

(7.2)

∇γ̇∇δγ γ̇ = γ
(

˙(T′) +∇SṪ +∇ṠT +∇T Ṡ +∇T∇ST
)

(7.3)

∇2
γ̇ γ̇ = γ

(
T̈ + 2∇TṪ +∇ṪT +∇2

TT
)

(7.4)

∇3
γ̇ γ̇ = γ

(...
T + 3∇TT̈ + 3∇ṪṪ +∇T̈T + 3∇2

TṪ+ (7.5)

+2∇T∇ṪT +∇Ṫ∇TT +∇3
TT
)

R (S, T) T = ∇S∇TT −∇T∇ST = [∇S, ∇T]T (7.6)

Proof. We only prove (7.2), the other calculations being similar.

∇δγ∇γ̇ γ̇ = ∇δγ
(
γ
(
Ṫ +∇TT

))
= Lδγ

(
∂αj

∂t

)
γAj + βi

∂αj

∂t
γ∇AiAj + Lδγ

(
αiαj

)
∇AiAj + γαiαjβk∇Ak∇AiAj

= γ

(
∂2αj

∂s∂t
Aj +

(
βi
∂αj

∂t
+
∂αi

∂t
αj + αi

∂αj

∂t

)
∇AiAj + βk∇Ak∇TT

)
= γ

(
(Ṫ)′ +∇SṪ +∇ṠT +∇T Ṡ +∇S∇TT

)
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Concerning (7.6), from (2.9) with [δγ, γ̇] = [S, T] = 0, from (7.2) and (7.3)

R(δγ, γ̇)γ̇ = ∇δγ∇γ̇ γ̇ −∇γ̇∇δγ γ̇

R (γS, γT) γT = γ
(

(Ṫ)′ +∇SṪ +∇ṠT +∇T Ṡ +∇S∇TT−

− ˙(T′)−∇SṪ −∇ṠT −∇T Ṡ−∇T∇ST
)

Since R is a tensor it is left invariant; furthermore, the order of the mixed second
derivative with respect to s and t commutes also in g

˙(T′) =
∂2αj

∂s∂t
Aj =

∂2αj

∂t∂s
Aj = (Ṫ)′ (7.7)

Hence, the result.
The left invariance of the curvature tensor R means that the curvature term of

(3.2) is:

R(∇γ̇ γ̇, γ̇)γ̇ = R(Ṫ +∇TT, T)γT = γ
(
R(Ṫ, T)T +R(∇TT, T)T

)
(7.8)

The expressions (7.5) and (7.8) allows to write down directly the reduced expres-
sion for (3.2) in terms of left invariant vector fields. However, it is quite instructive
to see the genesis of this formula, going through the reduction of the cost functional
J .

We compute first the following equalities:
Proposition 7.2. For the family of variations G(s, t) on (G, I):

〈(Ṫ)′, Ṫ〉 = 〈S,
...
T 〉 (7.9)

〈(Ṫ)′, ∇TT〉 = 〈S, ∇T̈T + 2∇ṪṪ +∇TT̈〉 (7.10)

〈∇S∇TT, Ṫ〉 = 〈S, ∇2
TṪ +R(Ṫ, T)T〉 (7.11)

〈∇S∇TT, ∇TT〉 = 〈S, ∇3
TT +R(∇TT, T)T〉 (7.12)

〈∇T Ṡ, Ṫ〉 = 〈S, ∇ṪṪ +∇TT̈〉 (7.13)

〈∇T Ṡ, ∇TT〉 = 〈S, ∇Ṫ∇TT +∇T∇ṪT +∇2
TṪ〉 (7.14)

〈∇SṪ, Ṫ〉 = 0 (7.15)
〈∇SṪ, ∇TT〉 = −〈Ṫ, ∇S∇TT〉 (7.16)
〈∇ṠT, Ṫ〉 = 〈S, ∇TT̈〉 (7.17)

〈∇ṠT, ∇TT〉 = 〈S, ∇T∇ṪT + 2∇2
TṪ +R(Ṫ, T)T〉 (7.18)

Proof. All the expressions are based on the equations (6.6) and (6.7). We see
some of the significant calculations:

• Eq. (7.9):

〈(Ṫ)′, Ṫ〉 = 〈 ˙(T′), Ṫ〉 = −〈T′, T̈〉 = −〈Ṡ, T̈〉 = 〈S,
...
T 〉 by (7.7)

• Eq. (7.10):

〈(Ṫ)′, ∇TT〉 = 〈S, ¨(∇TT)〉 = 〈S, ∂
2αiαj

∂t2
∇AiAj〉

= 〈S,
(
∂2αi

∂t2
αj + 2

∂αi

∂t

∂αj

∂t
+ αi

∂2αj

∂t2

)
∇AiAj〉

= 〈S, ∇T̈T + 2∇ṪṪ +∇TT̈〉
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• Eq. (7.11):

〈∇S∇TT, Ṫ〉 = 〈∇T∇ST +R(S, T)T, Ṫ〉
= −〈∇ST, ∇TṪ〉+ 〈R(S, T)T, Ṫ〉 by (7.6)

= −〈∇TS, ∇TṪ〉+ 〈R(Ṫ, T)T, S〉 by (6.4) and (3.3)

= 〈S, ∇2
TṪ〉+ 〈R(Ṫ, T)T, S〉

• Eq. (7.17):

〈∇ṠT, Ṫ〉 = 〈 ˙(∇ST)−∇SṪ, Ṫ〉 = −〈∇ST, T̈〉 − 〈∇SṪ, Ṫ〉 by (7.1)

= −〈∇TS, T̈〉 = 〈S, ∇TT̈〉 by (6.4) and (7.15)

The other relations are obtained using similar arguments.
Theorem 7.3. A necessary condition for a smooth curve γ(t) ∈ G of tangent

vector field T ∈ g and interpolating γ(t0) = g0, γ(tf ) = gf , V0 = g−1
0 v0, Vf = g−1

f vf
to be an extremum of J is that

...
T + 3∇TT̈ + 3∇ṪṪ +∇T̈T + 3∇2

TṪ + 2∇T∇ṪT

+∇Ṫ∇TT +∇3
TT +R(Ṫ, T)T +R(∇TT, T)T = 0 (7.19)

Proof. From (7.5) and (7.8) we have already (7.19) by brute force. To see it
directly, expand the expression for J and use the computations of Proposition 7.2.

d

ds
J (Gs(t))

∣∣∣∣
s=0

=
∫ tf

t0

〈∇δγ∇γ̇ γ̇, ∇γ̇ γ̇〉dt

=
∫ tf

t0

〈γ
(

(Ṫ)′ +∇SṪ +∇ṠT +∇T Ṡ +∇S∇TT
)
, γ
(
Ṫ +∇TT

)
〉dt by (7.2)

The ten inner products under the sign of integral are given in (7.9)-(7.18). The result
follows by considering extremals of J i.e. d

dsJ (Gs(t))
∣∣
s=0

= 0.
Notice that, except for pulling back the velocities v0 and vf to g, the boundary

data on the curve itself g0, gf are not anymore entering into the problem, just like in
the Euler-Poincaré equations.

8. Optimal control for the reduced second order variational problem.
Assume that the left invariant input distribution F has the coordinate expression
F = f iAi.

Proposition 8.1. The covariant derivatives of the input vector distribution F

are:

∇γ̇γF = ∇2
γ̇ γ̇ = γ

(
Ḟ +∇TF

)
(8.1)

∇2
γ̇γF = ∇3

γ̇ γ̇ = γ
(
F̈ + 2∇TḞ +∇ṪF +∇2

TF
)

(8.2)
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Proof. Equation (8.2) is shown in the same way as (6.2). For (8.2), it can be
obtained from computations of the same type as in Proposition 7.1.

∇2
γ̇γF = ∇γ̇

(
γ
(
Ḟ +∇TF

))
= Lγ̇

(
∂f j

∂t

)
γAj + Lγ̇

(
αif j

)
∇AiAj + αi

∂f j

∂t
γ∇AiAj + γαkαif j∇Ak∇AiAj

= γ

(
∂2f j

∂t2
Aj +

(
αi
∂f j

∂t
+
∂αi

∂t
f j + αi

∂f j

∂t

)
∇AiAj + αkαkαif j∇Ak∇AiAj

)
= γ

(
T̈ +∇ṪF + 2∇TḞ +∇2

TF
)

Therefore, the expression for the control F is obtained from (3.4). Resuming the
“C2 dynamic interpolation problem” of Section 3:

Proposition 8.2. Under the same assumptions of Proposition 3.2, the left in-
variant control input F that generates a smooth trajectory which is an extremal of J
is given by the solution of

F̈ + 2∇TḞ +∇ṪF +∇2
TF +R(F, T)T = 0 subject to Ṫ +∇TT = F (8.3)

from the boundary conditions γ(t0) = g0, γ(tf ) = gf , V0 = g−1
0 v0 and F0 = ∇V0V0.

Proof. Since R is a left invariant tensor, this is the straightforward substitution
in (3.4) of equation (8.2).

9. Application to SE(3). The Special Euclidean Group SE(3) is the Lie group
of isometric transformations of R3 i.e. its left (or right) action on R3

SE(3)× R3 → R
3

(g, x) 7→ Lgx = gx

has push forward

SE(3)× TxR3 = R
3 → TgxR

3 = R
3

(g, v) 7→ Lg∗v = gv

which is an isometry and takes straight lines to straight lines in R3.
Using homogeneous coordinates,

SE(3) =
{
g ∈ Gl4(R), g =

[
R p
0 1

]
s.t. R ∈ SO(3) and p ∈ R3

}
with SO(3) =

{
R ∈ Gl3(R) | RRT = I3 and detR = +1

}
. The Lie algebra of SE(3)

is

se(3) =
{

X ∈M4(R), s.t. X =
[
ω̂X vX

0 0

]
with ω̂X ∈ so(3) and vX ∈ R3

}
with so(3) =

{
ω̂X ∈M3(R) s.t. ω̂TX = −ω̂X

}
and ·̂ : R3 → so(3) such that ω̂Xσ =

ωX × σ ∀ σ ∈ R3.
The Lie group exponential map gives the one-parameter curves corresponding to

constant generators in se(3) i.e. to the orbits of (complete) constant vector fields and
their left/right translations.
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For SO(3) and SE(3), the Lie group exponential map corresponds to the ordinary
matrix exponential and closed form formulae are available. In SO(3) one can use the
so-called Rodriguez’ formula:

eω̂X = I +
sin ‖ωX‖
‖ωX‖

ω̂X +
1− cos ‖ωX‖
‖ωX‖2

ω̂2
X

while in SE(3):

e : se(3) → SE(3) (9.1)

X =
[

ω̂X vX

03×1 0

]
7→
[

eω̂X A(ω̂X)vX

0 1

]
where

A(ω̂X) = I +
1− cos ‖ωX‖
‖ωX‖2

ω̂X +
‖ωX‖ − sin ‖ωX‖

‖ωX‖3
ω̂2

X

In SE(3), the exponential map being onto means that every two elements can be con-
nected by a one-parameter curve called screw. Its (normalized) constant infinitesimal
generator is called twist and corresponds to the axis of the rigid body rototranslation.

The derivation of the adjoint map Adg(Y) = Lg∗Rg−1∗Y = gYg−1 with respect to
g = etX, X ∈ se(3), at the identity of the group

adX =
d

dt
(AdetX)

∣∣∣∣
t=0

gives the Lie bracket adX(Y) = [X, Y] = XY − YX, i.e. the bilinear form defining
the Lie algebra. The Lie brackets basis elements A1, . . . , A6 of se(3) are expressed in
terms of the structural constants ckij : [Ai, Aj ] = ckijAk. The linear representations of
the operators Adg(·) and adX(·) is:

Adg =
[
R 0
p̂R R

]
adX =

[
ω̂X 0
v̂X ω̂X

]
(9.2)

The natural affine connection that can be associated to a biinvariant nondegen-
erate symmetric (0, 2)-tensor is called the (0)-connection and is studied by Cartan
in [5]. However, since the corresponding quadratic form is nondegenerate but not
positive definite, it is not compatible with the standard definition of kinetic energy of
a rigid body in G because of the negative energy that can be associated along certain
trajectories. Therefore we neglect it and concentrate instead on a positive definite
I. Because of the lack of bi-invariance of I, its natural connection is not among the
“canonical” ones studied in the classical literature [5, 10], but rather it can be seen
as the torsion-free metric connection of a trivially reductive homogeneous space with
respect to the left action on itself and studied accordingly (see for example [19] §13).

For the metric structure we are adopting, the Riemannian exponential map Exp
differs from the Lie group exponential map (9.1). In fact, disregarding the action
SO(3)→ End(R3) means dropping the A(ω̂) term:

Exp : se(3) → SE(3) (9.3)

X =
[

ω̂X vX

03×1 0

]
7→
[

eω̂X vX

0 1

]
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This corresponds to the exponential map for the direct product of Lie groups SO(3)⊗
R

3 which pairs the geodesics of SO(3) and the straight lines of R3.
From (9.2), the expressions for the coadjoint and infinitesimal coadjoint actions

Ad∗g−1 and ad∗X are:

Ad∗g−1 = (Adg)
−T =

[
R p̂R
0 R

]
,

ad∗X = − d

dt
Ad∗e−tX

∣∣∣∣
t=0

= − (adX)T =
[
−ω̂X −v̂X

0 −ω̂X

]
In (4.10), when we compute the covariant derivative of Y along X, due to the semidirect
action of SO(3) on R3, the terms ad∗XIY are nonnull, even when the inertia tensor is
diagonal, I = I. In this case I can be pulled out and (with abuse of notation)

ad∗XIY = ad∗XY =
[

0
−ω̂XvY

]
=
[

0
vY × ωX

]
6= 0

In particular then

U(X, Y) = −1
2

(ad∗XY + ad∗YX) =
1
2

[
0

ω̂XvY + ω̂YvX

]
∈ R3 (9.4)

Since adXY =
[

ω̂XωY

ω̂XvY − ω̂YvX

]
, the covariant derivative is

∇XY =
1
2

adXY + U(X, Y) =
[

1
2 ω̂XωY

ω̂XvY

]
(9.5)

The linear map AY of Proposition 4.1 is

AY =
[

1
2 ω̂Y 0
v̂Y 0

]
which is skew-symmetric with respect to 〈 · , · 〉 for all X if and only if Y ∈ so(3).
Therefore Y 6∈so(3) is not an infinitesimal isometry for I = I i.e. all left invariant

Killing vector fields of (SE(3), I) are of the form Y =
[
ωY

0

]
. In fact, Y ∈ so(3) implies

that eY = Exp(Y) and therefore one parameter subgroups generated by Y coincide
with geodesics of I. Notice from (9.4) that this does not imply U = 0, only that for
all X, Z ∈ se(3) the contribution of U(X,Z) ∈ R3 along Y is zero:

〈adYX, Z〉+ 〈X, adYZ〉 = 2〈U(X, Z), Y〉 = 0

However, this holds true only in virtue of the choice of a diagonal metric tensor.
If X = Y one finds the usual Euler equations for rigid bodies (see (6.11))

Ẋ =
[
ω̇X

v̇X

]
= −∇XX =

[
0

−ω̂XvX

]
with geodesic spray

Γ = γXh = (γX ; −γU(X, X)) =
(
γ

[
ωX

vX

]
; γ

[
0

ω̂XvX

])
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Similarly to (9.5), we have

∇ẊY =
[

1
2
̂̇ωXωŶ̇ωXvY

]
, ∇XẎ =

[
1
2 ω̂Xω̇Y

ω̂Xv̇Y

]
, ∇X∇YZ =

1
4

[
ω̂Xω̂YωZ

4ω̂Xω̂YvZ

]
(9.6)

and

∇W∇X∇YZ =
1
8

[
ω̂Wω̂Xω̂YωZ

8ω̂Wω̂Xω̂YvZ

]
From (2.9), using some vector algebra with the convention that a× b× c = a× (b× c),
after a few calculations, the values of the curvature tensor are given by1

R(X,Y)Z =
[
(ωX × ωY)× ωZ

r2

]
where r2 ∈ R3 is

r2 =
3
4
ωX × ωY × vZ +

3
4
ωY × ωX × vZ +

1
4

(ωX × ωY)× vZ

+
1
4
ωX × ωZ × vY +

3
4
ωZ × ωX × vY −

1
4

(ωX × ωZ)× vY

+
1
4
ωY × ωZ × vX −

3
4
ωZ × ωY × vX −

1
4

(ωY × ωZ)× vX

In our case, since U(X,Y) is null if X,Y are both in so(3) or in R3, the values of
the curvature are given by

• if X,Y ∈ so(3)

R(X,Y)Z = −1
4

[[X,Y],Z]

= −1
4

[
(ωX × ωY)× ωZ

(ωX × ωY)× vZ − ωZ × ωX × vY + ωZ × ωY × vX

]
• if X,Y ∈ R3 R = 0
• if X ∈ so(3), Y ∈ R3

R(X,Y)Z =
[

0
1
4ωX × ωZ × vY + 3

4ωZ × ωX × vY − 1
4 (ωX × ωZ)× vY

]
Notice, furthermore, it is easy to compute the sectional curvatures of (SE(3), I)

K(X,Y) =
〈R(X,Y)X,Y〉
|X|2|Y|2 − 〈X,Y〉2

In fact, from [1, 12], the general expression for the (nonnormalized) two-plane curva-
ture for a semidirect product is given by:

〈R(X,Y)X,Y〉 = −3
4
〈[X,Y], [X,Y]〉 − 1

2
〈[X, [X,Y]],Y〉 − 1

2
〈[Y, [Y,X]],X〉

+ 〈U(X,Y), U(X,Y)〉 − 〈U(X,X), U(Y,Y)〉

therefore

1Warning: in [20] a wrong expression is reported
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• if X,Y ∈ so(3)

〈R(X,Y)X,Y〉 =
1
4
〈[X,Y], [X,Y]〉 =

1
4
|ωX × ωY|2

• if X,Y ∈ R3 R ≡ 0
• if X ∈ so(3), Y ∈ R3 then 〈[X, [X,Y]],Y〉 = 〈[Y, [Y,X]],X〉 = 0 and

〈R(X,Y)X,Y〉 = −3
4
〈adXY, adXY〉+ 〈U(X,Y), U(X,Y)〉 = −1

2
|ωX × vY|2

If we consider the curve γ of g-valued tangent vector field T =
[
ωT

vT

]
, then the

necessary condition (7.19) corresponds to the system:

...
ωT +

3
2
ωT × ω̈T +

1
2
ωT × ωT × ω̇T +

1
2
ωT × ω̇T × ωT + (ω̇T × ωT)× ωT = 0

...
v T + 3ωT × v̈T + 3ω̇T × v̇T + ω̈T × vT +

5
2
ωT × ωT × v̇T+

+
7
2
ωT × ω̇T × vT + 2ω̇T × ωT × vT +

1
2
ωT × ωT × ωT × vT = 0

Substituting Ṫ + ∇TT with the control input F =
[
ωF

vF

]
of the mechanical system

(2.17), eq. (8.3) becomes the system of ordinary differential equations which are linear
and second order in F, quadratic and first order in T:

ω̈F + ωT × ω̇F +
1
2
ω̇T × ωF +

1
4
ωT × ωT × ωF + (ωF × ωT)× ωT = 0

v̈F + 2ωT × v̇F + ω̇T × vF −
1
4
ωT × ωT × vF+

+ωF × ωT × vT +
3
2
ωT × ωF × vT = 0
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